จากการสำรวจล่าสุดของ Gartner เกี่ยวกับระดับการเติบโตของ Business Intelligence (BI) และ Analytics พบว่าหน่วยงานมากกว่า 87 เปอร์เซ็นต์ ถูกจัดอยู่ใน Level 1 และ 2
คือทาง Gartner เขาแบ่งระดับการเติบโตของ BI และ Analytics ในองค์กรไว้ 5 ระดับดังนี้ครับ
ภาพจาก https://www.oreilly.com/library/view/streaming-change-data/9781492032526/app01.html
จากการสำรวจเรื่องการเติบโตของ Business Intelligence (BI) และ Analytics 5 ระดับ ทำไมองค์กรส่วนใหญ่ถึงไปได้แค่ขั้นที่ 2 ? ถ้าสังเกตจะเห็นว่าตั้งแต่ขั้นที่ 3 ขึ้นไปถึงระดับสูงสุด ปัจจัยสำคัญคือผู้บริหารซึ่งมีส่วนอย่างมากในการวัฒนธรรมองค์กร
และนอกจากนี้แล้ว ยังมีปัญหาอื่น ๆ อีกหลายอย่างที่ทำให้โครงการ BI ไม่สำเร็จคือ ความเข้ากันของระบบต่าง ๆ (Integrations and compatibility issues) ปัญหาด้านการใช้งาน (Ease of use problems) ไม่มีการวัดผลตอบแทนจากการลงทุนด้าน BI ที่ชัดเจน (No clear way to measure ROI) และปัญหาด้านคุณภาพของข้อมูล (Data Quality)
สำหรับบทความนี้จะขอสวมหมวก “ที่ปรึกษา” ที่เข้ามาปรับทิศทางให้องค์กรสามารถใช้ BI และ Analytics ให้เกิดประโยชน์ทางธุรกิจอย่างยั่งยืนนะครับ
แน่นอนว่าในยุคนี้ หันไปทางไหนก็มีข้อมูลเต็มไปหมดนะครับ ความเคลื่อนไหวต่าง ๆ ในโซเชียลมีเดีย ตัวตนออนไลน์ (Online Presence) ของธุรกิจเราที่ทุกแพลตฟอร์มสามารถรายงานในเชิงลึก (Insight) ให้เราได้ศึกษาข้อมูลต่าง ๆ อย่างละเอียด เว็บไซต์ของเราเองก็เชื่อมต่อกับเครื่องมือ Analytics และมีข้อมูลเกี่ยวกับพฤติกรรมผู้ใช้งานเว็บของเราเก็บไว้มากมาย
แต่ที่กล่าวมานี้นั้น ยังไม่รวมถึงอินเทอร์เน็ตของสรรพสิ่ง (IoT) ที่ใช้กันในแทบจะทุกภาคธุรกิจแล้ว ไม่ว่าจะเป็นด้านกีฬา (จับการเคลื่อนไหวนักกีฬา) การโรงแรม (เช่น การจับการเคลื่อนไหวแขกในห้องเพื่อควบคุมอุณหภูมิ) หรือภาคการเกษตรที่เรียกว่าสมาร์ทฟาร์ม
ความก้าวหน้าของเทคโนโลยีอินเตอร์เน็ต (และ IoT) รวมถึงเครื่องมือต่าง ๆ ช่วยให้เรารวบรวมและย่อยข้อมูลได้ง่ายเพียงปลายนิ้วคลิก และทำให้หลายหน่วยงานอยากจะใช้ประโยชน์จากข้อมูลมากมายมหาศาลที่มีอยู่ บวกกับกระแส “ฮิต” ของวิทยาศาสตร์ข้อมูลเข้าไป ทีนี้ องค์กรทั้งหลายก็เลยไม่อยากจะตกเทรนด์
เมื่อใคร ๆ ก็บอกว่าเราต้องมีดาต้า ต้องมี BI ต้อง Visualize ข้อมูลด้วย Dashboard ปรากฏการณ์การช้อปเครื่องมือ BI ไม่ว่าจะเป็น Power BI, Tableau, Oracle Analytics Cloud หรือ QlikView ก็เกิดขึ้น บางแห่งรักพี่เสียดายน้อง เลยซื้อสัก 2 อย่างก็เคยเห็นมาแล้วครับ การเลือกซื้อเครื่องมือโดยไม่ตั้งเป้าชัดเจนแต่แรกเป็นสัญญาณที่แสดงว่าเรายังไม่มีทิศทางในการลงทุนด้านข้อมูลที่ยั่งยืน
การทำความเข้าใจและตั้งเป้าผลตอบแทนจากการลงทุน (Return on investment หรือ ROI) ด้าน BI นั้นต้องทำให้รอบด้าน ทั้งเรื่องบุคลากร กระบวนการ เทคโนโลยีต่าง ๆ ที่เกี่ยวข้อง และการลงทุนด้านข้อมูล
คำถามที่สำคัญในขั้นตอนนี้คือ เราต้องการเห็นผลการลงทุน “อย่างไร ?” และ “เร็วแค่ไหน ?” จากนั้นเราต้องวางแผนรายละเอียดกิจกรรมของโครงการให้เชื่อมโยงกันเพื่อไปถึงเป้าหมาย พร้อมทั้งลองชั่งน้ำหนักกิจกรรมทุกตัวว่ามีเรื่องใดบ้างที่ไม่สามารถต่อรองได้ (กรณีที่โครงการหลุดจากแผน เราก็สามารถชะลอกิจกรรมที่น้ำหนักน้อยไว้ได้)
ถ้าองค์กรไม่มีนโยบายการกำกับดูแลข้อมูล (Data Governance) มาก่อน ก็ต้องจัดการกับเรื่องนี้เป็นอันดับแรก ทั้งประเด็นในเรื่องความเชื่อมโยงกันของข้อมูลส่วนต่าง ๆ ความปลอดภัย ชุดคำอธิบายข้อมูล (Metadata) และการจัดการคุณภาพข้อมูล แค่เรื่องนี้เรื่องเดียวก็กินเวลามากพอสมควรแล้วครับ และเป็นสิ่งที่ต้องทำความเข้าใจกันตั้งแต่แรกว่ามันจะมี “หนี้” เชิงเทคนิคเกิดขึ้น
เรื่องหนึ่งที่ผู้บริหารอาจจะไม่ได้คาดคิดไว้คือ ขั้นตอนการเตรียมข้อมูลเพื่อขึ้นระบบ Dashboard นั้นอาจใช้เวลาหลายเดือนหรือมากเป็นปี ในขณะที่บางองค์กรก็เร่งรีบทำ Dashboard ด้วยข้อมูลที่ยังไม่ได้ทำการยกเครื่อง ทำความสะอาด หรือเชื่อมต่อระหว่างหน่วยงานอย่างเป็นระบบ ทำให้ข้อมูลที่แสดงอาจมีข้อผิดพลาด กลายเป็นจุดอ่อน ทำให้โปรเจคต้องพับไป วิธีที่ดีที่สุดคือการชี้แจงให้ชัดเจนว่าการรวบรวมข้อมูลมาจัดระเบียบกันใหม่นั้นไม่ใช่เรื่องง่ายและต้องใช้เวลานาน
ถ้าทีมงานสามารถระบุความจำเป็นในการเปลี่ยนผ่านได้ชัดเจนและเข้าใจว่าการสร้าง dashboard ในการทำงานระดับองค์กรคือการสร้างระบบนิเวศทั้งระบบ ตั้งแต่การจัดการข้อมูลให้อยู่ในรูปแบบที่ต้องการ การดึงข้อมูลจากระบบต่าง ๆ ที่ทำงานอยู่แล้วมาแปลงเป็นรูปแบบที่เหมาะกับระบบ BI การควบคุมคุณภาพข้อมูล การลงทุนเทคโนโลยีทั้งด้าน Visualization เอง หรืออาจมีการเพิ่มคลังข้อมูลสำหรับพักข้อมูลระหว่างทาง (Interim data repositories) แผนการโอนย้ายข้อมูลทั้งระบบมาอยู่รวมกันเพื่อเพิ่มประสิทธิภาพในการทำงาน และสุดท้ายคือการตกลงร่วมกันเรื่องความหมายต่าง ๆ ของข้อมูลและ KPI ที่จะใช้งาน
ที่กล่าวมานี้คือ “หนี้เชิงเทคนิค” ซึ่งไม่ต่างจากการสร้างหนี้โดยกู้ยืมเงินเพื่อการศึกษาเพื่อรับประกันอนาคตที่ดีกว่า หรือกู้เงินซื้อบ้านเพื่อเป็นปัจจัยในการใช้ชีวิตอย่างมั่นคง ฝ่ายบริหารต้องเข้าใจถึง “หนี้” ที่จะเกิดขึ้น มันไม่ใช่เรื่องของเงินลงทุนทางเทคโนโลยีเท่านั้น แต่มันมีเงื่อนไขของเวลาและทรัพยากรด้วย การกำหนดหนี้เชิงเทคนิคที่ชัดเจนจะช่วยให้การทำงานง่ายขึ้นและทุกฝ่ายมีเป้าหมายร่วมกัน
เมื่อสร้างความเข้าใจถึง “หนี้” ที่จะเกิดขึ้นในองค์กรและในระดับแผนกแล้ว สิ่งที่จะช่วยให้เห็นผลการลงทุนได้เร็วที่สุดคือการเลือกโครงการนำร่องให้เหมาะสม เกณฑ์ในการเลือกคือ “ปัญหาเร่งด่วนทางธุรกิจที่สามารถตอบได้ด้วย Data Visualization” ซึ่งมีแนวทางการเลือกดังนี้
ในการยกเครื่ององค์กร องค์ประกอบที่สำคัญที่สุดก็คือพนักงานของบริษัท ดังนั้นถ้าคิดว่าจะจัดอบรมตามมาตรฐานหลักสูตรทั่วไป หรือส่งไปอบรม Upskill ตามบริษัทอบรมที่ขายคอร์สกันมากมายตอนนี้ หรือซื้อคอร์สออนไลน์ให้พนักงานเรียนกันเองแล้วคาดหวังให้พนักงานกลับไปประยุกต์ใช้ได้ในงานจริงละก็ เตรียมพับโครงการได้เลยครับ
การสร้างความเปลี่ยนแปลงระดับนี้ต้องใช้ผู้เชี่ยวชาญ (ปกติก็เป็นคนของบริษัทที่ปรึกษาละครับ) ไปให้ข้อมูลกรอบความคิดเรื่องการจัดการข้อมูล เรื่อง Visualization และ Dashboard เป็นลักษณะ In-house training เพื่อให้ทุกคนมีฐานความเข้าใจตรงกัน ซึ่งระหว่างการอบรมนี้ เราก็สามารถมองหา Data champion ไปด้วย ใครที่ดูโดดเด่นกว่าเพื่อน ใครดูแล้วสามารถทำความเข้าใจเรื่อง Data visualization ได้ไว ก็เตรียมไปคุยกับผู้บังคับบัญชาของแผนกเขาได้เลย เพราะการจะทำโครงการนำร่อง เราต้องสามารถใช้เวลาอยู่กับ Data champion กลุ่มนี้พอสมควร ดังนั้นการต่อรองเพื่อดึงเวลาของพนักงานที่จะรับผิดชอบเรียนรู้การทำ Dashboard นี้ออกมาได้อย่างน้อย 50% ของเวลาทำงานทั้งหมดเป็นเรื่องที่ต้องคุยกันให้เข้าใจแต่แรก
ถ้าข้อมูลพร้อม พนักงานพร้อม และหัวหน้าไฟเขียวแล้ว ก็เป็นไปได้ที่เราจะได้เห็น Dashboard ต้นแบบ โดยพนักงานที่ถูกคัดเลือกมาแล้วจะมีผู้เชี่ยวชาญประกบคอยให้คำปรึกษาแบบตัวต่อตัว เอาปัญหาจริงของแผนกมาแก้ด้วยการใช้วิเคราะห์ข้อมูลและสร้างชิ้นงานออกมา
เป้าหมายของการพัฒนาบุคลากรจึงไม่ใช่การอบรม แต่เป็นผลงานจริงที่มีมูลค่าทางธุรกิจ เช่นสามารถขุดข้อมูลเชิงลึก (Insights) ออกมาให้เห็นได้อย่างชัดเจน สร้างความเชื่อมั่นให้ฝ่ายบริหารได้เร็วที่สุด หรือสามารถลดปริมาณงานของนักวิเคราะห์ได้เมื่อใช้เทคโนโลยีเข้ามาช่วยในการแปลงข้อมูลจากระบบปฏิบัติงานเข้าสู่ระบบ BI ได้อัตโนมัติ ปัจจัยเหล่านี้จะผลักดันให้ได้รับการสนับสนุนทรัพยากรในระยะยาว
การพัฒนา Dashboard นำร่องอาจใช้เวลาประมาณ 3-4 เดือนของแต่ละรอบงาน แผนกที่พัฒนา Dashboard ได้ก็จะส่งพนักงานของตัวเอง (Data Champion) มาโชว์ผลงาน แสดงให้เห็นว่าสิ่งที่ทุ่มเทลงไปนั้นออกมาเป็นผลงานที่ใช้ได้จริง ต้องจัดให้เป็นเวทีใหญ่ที่ทั้งองค์กรจะมีส่วนร่วมในการแลกเปลี่ยนประสบการณ์ โดยผู้บริหารระดับสูงมีส่วนร่วม
อีเวนท์นี้สำคัญมากครับ ต้องทั้งดังและสำเร็จ (High-visibility Proof Points) เป้าหมายไม่ใช่การโชว์ Dashboard สวย ๆ แต่มันต้องตอบโจทย์ธุรกิจ ต้องเล่าเรื่องราวของผู้คนในองค์กรและความสำเร็จของงาน ซึ่งในส่วนนี้การอบรมทักษะ Visual และ Data Storytelling จะช่วยได้มาก ถ้าทำอีเวนท์แบบนี้ได้ดี คนที่เป็น Data Champion เองก็ได้เครดิตไปเต็ม ๆ และเกิดกระแส สร้างกำลังใจให้ทีมอื่น ๆ ในองค์กรได้ ผู้บริหารเองก็จะเห็นภาพ เห็นประโยชน์ของเงินที่ลงทุนไป
ถ้าคุณอ่านบทความนี้อยู่ ผมเชื่อว่าอย่างน้อยคุณก็ตระหนักถึงประโยชน์ของการใช้ BI ในองค์กร คุณอาจจะเคยลองทำงานประเภทนี้ในแผนกหรืออยากลองทำโปรเจค BI ไปให้ถึงระดับองค์กร มีอยู่สองประเด็นที่ต้องคำนึงถึงก่อนจะเดินหน้าลุย
แต่อย่าท้อใจครับ แรงกดดันที่ BI จะเข้ามามีบทบาทในธุรกิจมันมากมายจริง ๆ ถ้าไม่ใช่วันนี้ อาจจะเป็นในอนาคตอันใกล้ที่ผู้บริหารจะหันมาสนใจ
|
ผู้เขียน DATA STORYTELLING IN MARKETING ใช้ดาต้าเล่าเรื่องแบบมืออาชีพ | ครูมหาวิทยาลัยใกล้ๆ กรุงเทพที่สนใจเทคโนโลยี การศึกษา และสิ่งที่เป็นไปได้เมื่อเอาสองเรื่องนี้มารวมกัน |